- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dexheimer, V. (2)
-
Lopes, Ilídio (2)
-
Patra, S. K. (2)
-
Rather, Ishfaq A. (2)
-
Usmani, A. A. (2)
-
Dexheimer, Veronica (1)
-
Rahaman, Usuf (1)
-
Rather, Asloob A. (1)
-
Rather, Ishfaq A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Cortina-Gil, D (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cortina-Gil, D (Ed.)A comprehensive study is carried out on the impact of strong magnetic fields on the deconfinement phase transition inside massive neutron stars. The matter equation of state and the general relativity solutions, which also fulfill Maxwell’s equations, are modified when taking magnetic-field effects into account. We observe that the maximum mass and canonical-mass radius of stars computed using spherically-symmetric TOV equations and axisymmetric solutions obtained through the LORENE library differ significantly for large values of magnetic dipole moment. The discrepancies depend on the stellar mass being studied, as well as the stiffness of the equation of state. This indicates that the matter composition and interactions determine the magnetic field thresholds for the acceptable approximation of isotropic stars and the appropriate application of TOV equations.more » « less
-
Rather, Ishfaq A.; Rather, Asloob A.; Lopes, Ilídio; Dexheimer, V.; Usmani, A. A.; Patra, S. K. (, The Astrophysical Journal)Abstract The effects of strong magnetic fields on the deconfinement phase transition expected to take place in the interior of massive neutron stars are studied in detail for the first time. For hadronic matter, the very general density-dependent relativistic mean field model is employed, while the simple, but effective vector-enhanced bag model is used to study quark matter. Magnetic-field effects are incorporated into the matter equation of state and in the general-relativity solutions, which also satisfy Maxwell’s equations. We find that for large values of magnetic dipole moment, the maximum mass, canonical mass radius, and dimensionless tidal deformability obtained for stars using spherically symmetric Tolman–Oppenheimer–Volkoff (TOV) equations and axisymmetric solutions attained through the LORENE library differ considerably. The deviations depend on the stiffness of the equation of state and on the star mass being analyzed. This points to the fact that, unlike what was assumed previously in the literature, magnetic field thresholds for the approximation of isotropic stars and the acceptable use of TOV equations depend on the matter composition and interactions.more » « less
-
Rather, Ishfaq A.; Rahaman, Usuf; Dexheimer, V.; Usmani, A. A.; Patra, S. K. (, The Astrophysical Journal)
An official website of the United States government
